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Introduction 



Applying RL to financial datasets 

Financial data on a daily scale is scarce and non-stationary. To apply 
deep reinforcement learning (RL) to finance training environments, 
for instance through market generators, need to be created as 
otherwise the RL agent may try to exploit spurious characteristics in 
the data instead of learning the underlying properties governing the 
data. 

Potential RL applications include, but are not limited to: 

• Hedging of derivatives [2] 
• Portfolio optimization [6] 
• Risk management 
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Synthetic market generators: related work 

Recently, the topic of data-driven market simulation has attracted 
the attention from industry and academia: 

• [7, 9, 10, 12] use the classic GAN to generate macroeconomic time 
series, stock returns, limit-order book data and equity option 
markets. 

• SigCWGANs [11] learn the joint-distribution by leveraging 
signatures and calibrate a deterministic discriminator before 
training. 

• [3] paired variational autoencoders (VAEs) with log-signatures to 
generate stock returns. 

• COT-GANs [14] use causal-optimal transport and Sinkhorn 
divergences. 
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Quant GANs 

With Quant GANs we aim to approximate a synthetic market 
generator for asset returns in an unsupervised fashion by leveraging 
a neural network-based discriminator as in the classic GAN setup. 
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Figure 1: S&P 500 (blue) and 128 synthetic Quant GAN paths (orange). 5 



A review of the empirical 
properties of asset returns 



Validating the Quant GANs performance via stylized facts 

Cont [5] identifies and summarises some of the most consistent 
empirical findings characterising asset returns which he coins as 
stylized facts. 

Stylized facts, thus, are characteristic features we would like our 
synthetic market generator to have. 

In what follows we illustrate a subset of the most prominent stylized 
facts by using the historical log-returns (xt)Tt=1 of the S&P 500. 
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Figure 2: Adjusted close price of the S&P 500 from 3 Jan 2007 - 1 June 2020. 
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Stylized facts: kurtosis 

Positive excess kurtosis: empirical distribution is peaker than the 
Gaussian, i.e. 

T ( )4∑1 xt − ̄x 
κ̂h := − 3T

t=1 
σ̂(x) 

where x̄ is the average and σ̂(x) the standard deviation of (xt)tT 
=1, is 

greater zero. 
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Figure 3: Unconditional distribution of the S&P 500 on the linear- (le t) and 

log-scale. κ̂h = 13.15. 
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Stylized facts: fat tails 

Fat-tails: tails resemble power law decay, denoting the empirical CDF 
by F̂h : R → [0, 1] we observe 

ln(1 − ̂Fh(x)) ≈ −α ln(x) for x ≫ 0. 

and 
ln ̂Fh(x) ≈ α ln(x) for x ≪ 0. 
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Figure 4: Le t and right tail of the S&P 500. The x-axis resembles the 

magnitude of the log-return, and the y-axis the empirical CDF, both on the 

log-scale. 8 



Stylized facts: serial autocorrelation and volatility clusters 

Define the empirical auto-covariance function of (xt)Tt=1 as 

T−k∑1 
ρ̂xh(k) = (xt − ̄x)(xt+k − ̄x)T − k 

t=1 

1where x̄ denotes the mean of (xt)Tt=1. 

No serial correlations: linear autocorrelations ρ̂hx (k)/ρ̂hx (0), 
k = 1, . . . , T are o ten insignificant. 

Presence of volatility clusters: phases of low and high absolute 
|x| |x|log-returns tend to clustes, i.e. ρ̂h (k)/ρ̂h (0) tends to be positive and 

decays slowly. 

1In our notation we use h in the subscript to indicate that we are computing the 
estimator with respect to historical log-returns. 
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Stylized facts: leverage effects 

Leverage effects: anti-correlation between log-returns and volatility. 
T−k∑1 (|xt| − |¯ x|)(xt+k − ̄x)l̂h(k) = < 0T − k σ̂(|x|)σ̂(x)
t=1 

for small h. 
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Figure 5: Autocorrelation functions of absolute, squared and serial 
log-returns and the leverage effect function of the S&P 500. 
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The model: Quant GANs 



Problem formulation 

Consider an unknown distribution ν and a sequence of (multivariate) 
log-returns (xt)Tt=1 in X ⊆ Rd sampled from ν . Furthermore, assume 
that ν is supported on Z ⊆ Rl for d ≫ l. 

In generative modelling the aim is to construct a generator function 
G : Θ ×Z → X such that we can sample from an easy to sample 
distribution µz and Gθ 

#µ
z, θ ∈ Θ and ν are close with respect to some 

metric. The challenge here is to find a suitable cost function such 
that the functions parameters θ ∈ Θ are approximated and the 
distance between the two distributions is minimized. 
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Generative adversarial networks (GANs) 

In GANs a neural network called the discriminator is utilized as this 
cost function. The discriminator D : X → [0, 1] has the objective to 
discriminate whether a sample x ∈ X is drawn from the unknown 
data distribution ν or generated distribution Gθ 

#µ
z, whereas the 

generator G : Z → X has the objective to fool the discriminator. 

The GAN’s objective is formulated as a two-player min-max game 

inf sup Eν [ln D ◦ X] + Eµz [ln (1 − D ◦ G ◦ Z)]
G:Rl→Rd D:Rd→[0,1] 

Note the discriminator’s objective is to minimize the binary 
cross-entropy. 
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The model: Quant GAN (1) 

The Quant GAN is inspired from the recent success of generative 
adversarial networks (GANs) [8] in the image domain (see e.g. [1]). 

To model temporal dynamics and capture longer-ranging 
dependencies, the functions D and G are constructed through 
temporal convolutional networks (TCNs). TCNs are convolutional 
neural networks that utilize dilated caual convolutions to capture 
longer-ranging dependencies. 
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The model: Quant GAN (2) 

Gθ (zt, . . . , zt−15) 
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Figure 7: Depiction of a Quant GAN generator with 4 hidden layers and a 

dilation factor of 2. The generator’s receptive field size is 16. (For details 
refer to [13] or to the code github.com/magnumw/QuantGANs.) 
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Model advantages and disadvantages 

Advantages: 
When compared to RNNs: 

• No backpropagation through time required. 
• Stable and parallelizable generation. 
• More stable gradients due to the use of convolutions. 

Disadvantages: 

• Unconditional generator - no initial conditions can be inferred. 
• Stochastic discriminator and no criterion when to stop training.2 

• Not parsimonious. 
• Construction of the generator causes synthetic log-returns to be 
independent a ter a finite number of lags. 

2See for example [11] for a deterministic discriminator which is approximated before 
training and also [3] which pair log-signatures with VAEs. 
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Numerical results 



Test metrics: distributional 

To assess the convergence and observe if the Quant GAN learns 
stylized facts we compute a number of test metrics of the 
unconditional distribution during training. 

Denote by dfˆ ·, κ̂·, ̂s· for · ∈ {h, G} the unconditional distribution, 
kurtosis and skew of historical and generated data respectively. We 
track the following test metrics: 

Density metric: 
|dfˆ h − dfˆ G|1 

Absolute difference of kurtosis: 

|κ̂h − κ̂G| 

Absolute difference of skew: 

|ŝh − ̂sG| 
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Test metrics: dependence 

Furthermore, we compute different test metrics to assess the 
dependence structure of synthetic data. 

Serial ACF metric: 
64∑1 

ρx ρx ρx ρx| ĥ(h)/ ĥ(0) − Ĝ(h)/ Ĝ(0)|64 
h=1 

Absolute difference of the ACF of absolute log-returns: 
64∑1 |x| |x| |x| |x||ρ̂h (h)/ρ̂h (0) − ρ̂G (h)/ρ̂G (0)|64 
h=1 

Absolute difference of the leverage effect function: 
16∑1 |̂lh(h) − l̂G(h)|16 
h=1 
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Training settings 

Hyperparameters 
Batch size 512 

Learning rates 1e-4 / 3e-4 (G / D) 
Optimizer Adam 

Latent dimension 3 

Lookback 127 / 127 (G / D) 
Total number of parameters 85424 / 83824 (G / D) 

Hardware 

GPU RTX 2070 

Required memory 2663MiB 

Total training time 1:49 minute 

Dataset 
Asset S&P 500 closing price 

Time horizon 3 Jan 2011 - 31 Dec 2019 
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Can Quant GANs learn stylized facts? 
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Figure 8: From le t to right: comparison of the empirical PDFs on the linear-
and log-scale, serial ACF, ACF of absolute log-returns and the leverage effect 
function. The colors blue and orange indicate the estimators computed from 

historical and synthetic data respectively. 

20 



+ 
+ 

-r 

Synthetic paths 

0 500 1000 1500 2000

1000

2000

3000

4000

5000

6000

7000

Sp
ot

 p
ric

e
Synthetic paths

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
1000

1500

2000

2500

3000

Sp
ot

 p
ric

e

S&P 500

Figure 9: Ten synthetic paths (top) and the historical S&P 500 path (bottom). 
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How well does the model converge? 
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Figure 10: Development of the test metrics during training. Observe that 
most of the test metrics, except the serial ACF metric, follow a downward 

trend. This confirms that the discriminator of the Quant GAN is able to 

detect stylized facts. 
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Concluding remarks 



Concluding remarks 

• Numerical results demonstrate that Quant GANs can learn 
stylized facts in an unsupervised fashion. 

• However, the unconditional structure of the model and the 
independence assumption (see [13, Remark 5.3]) may limit the 
models utility for further applications. 

• Although Quant GANs could be trained with larger receptive 
fields in practice optimisation becomes unstable, leaving future 
research. 

• Furthermore, more elaborate tests need to be developed to test 
the proximity of the generated distribution to the historical, see 
e.g. [3, 4]. 
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